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bstract

his paper proposes a new relation between the Young’s modulus of ceramics and the volume fraction of porosity. The relation is obtained by
pscaling (coarse-graining) the fluctuations of the microstructure. The microstructure is modeled in terms of phase random fields, which upon
pscaling lead to elastic coefficients described by continuous spatial random fields. The effective (macroscopic) elastic modulus is then obtained
y averaging over the continuum-scale disorder. Using physically motivated arguments, an explicit expression between the Young’s modulus and
he porosity is proposed. This expression involves three empirical parameters, i.e. the solid-phase modulus and two perturbation coefficients. The

arametric expression is shown to fit well experimental measurements from the literature. Empirical “bounds” for the Young’s modulus are also
ormulated. These bounds account for variations due to microstructural properties that are not explicitly calculated in the upscaling.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

The structure of ceramic materials is heterogeneous due to
ariations in the porosity, composition and mass density. The
ocal structure variations lead to subsequent variations in the

echanical properties. For engineering purposes, it is desir-
ble to relate explicitly the structural and mechanical properties,
.g. by means of constitutive relations between the local elastic
roperties and the porosity1. In the case of isotropic ceramics
he elastic coefficients are determined from the Young’s mod-
lus and the Poisson’s ratio.2 The present study focuses on the
orosity dependence of the Young’s modulus measured at con-

tant temperature. Studies on the temperature dependence of the
oung’s modulus suggest a linear relation, e.g. 3
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In the case of materials with spatially non-uniform proper-
ies, the macroscopic elastic behavior is determined from the
oarse-grained elastic moduli that relate the average stress and
eformation tensors. Various approximate theories for the esti-
ation of the Young’s modulus have been formulated that link

ts value to the porosity of ceramics, e.g.3,4 A number of these
odels are reviewed and evaluated in 5. A more recent, critical

eview of the most commonly used modulus–porosity relations
s found in 6.

In a recent paper1 the Young’s modulus and Poisson’s ratio
or model ceramics, generated by computer simulations, were
nvestigated. The Finite Element Method was used to determine
he local deformations resulting from imposed stress and thus
o obtained estimates of the effective elastic moduli as a func-
ion of the porosity. The estimates were subsequently corrected
or finite-size effects. Then, the estimated moduli were fitted
o the Phani–Niyogi expression,7 i.e. Eeff = Es(1 − φ/φ0)n,
here Es represents the elastic modulus of the solid phase
nd φ0 the percolation threshold. The empirical parameters
0 ≈ 0.652 and n ≈ 2.23 were determined by numerically fit-

ing the model curve of Eeff versus φ to the synthetic data.
his expression led to better agreement with published data than

mailto:dionisi@mred.tuc.gr
dx.doi.org/10.1016/j.jeurceramsoc.2007.10.004
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stimates based on three different microstructure models (over-
apping spheres, overlapping spherical pores and overlapping
llipsoidal pores). The Phani–Niyogi expression for the Young’s
odulus is independent of the Poisson’s ratio, a property that in

ractice holds for ceramic materials with porosities up to 0.4.
his relation interpolates smoothly between Eeff = Es at zero
orosity to Eeff = 0 at the percolation threshold. However, to
ur knowledge there is no physical motivation for the power-law
ependence of this equation, and in particular for the non-integer
alue of the exponent. The values of the fit parameters φ0 and n
re not universal but depend on the type of the ceramics and the
icrostructure obtained (thus on the preparation method); for

xample, this can be seen by comparing the parameter values
btained in 1 with the respective values (Table 3) in 6.

The conceptual model presented here focuses on two-phase,
sotropic and “ideal ceramics”. It assumes that the elastic proper-
ies are determined purely from the microstructure and not from
lastic defects (i.e. micro-cracks), that may be independent from
he geometry of the pore space. The experimentally measurable
oung’s modulus is obtained by coarse-graining the microstruc-

ure, leading to a perturbation expansion in terms of the volume
raction of porosity.d A physical argument is then used to include
he impact of defects in the coefficients of the perturbation
xpansion. The resulting expansion uses φ̄/(1 − φ̄), where φ̄

s the mean volume fraction of porosity, as the series expansion
arameter. In this respect it differs from other analytical expres-
ions. The physical meaning of this expansion is discussed in
he following sections. Finally, the model applies to materials
ith porosity in the range 0–0.4, which is representative for most

eramics.

. Conceptual model of structure – elasticity relations

The conceptual model of ceramic structure proposed here
onnects three different scales, which will be referred to as the
icro, the local and the macro scales. At the micro scale the

tructure is determined by the binary phase field that distin-
uishes between solid and pore space, and the variations of the
olid phase modulus. At the local scale the variations of the elas-
ic coefficients are assumed to be continuous. The macro scale
orresponds to the size of the experimental samples, which is
ssumed large enough to allow averaging over the local varia-
ions.

Let s denote any point inside the ceramic material. In the
icro scale representation, the elastic modulus will be denoted

y E(s), at the local scale by E(s; �) where � is the reference local
cale; at the macro scale Eeff will be used to denote the effective
lastic modulus. The final result at the macro scale is an expres-
ion for the elastic modulus that depends on the volume fraction

f porosity. The expression involves two empirical coefficients
hat incorporate properties specific to the microstructure of the
eramic material.

d Note that the term coarse-graining is used herein to denote the mathematical
rocedure of obtaining a physical model under a change-of-scale transformation
upscaling), and it is not linked to a particular grain size.
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.1. Micro scale: phase field representation

The microstructure of ceramic materials is determined by the
rregular distribution of the locations, sizes and shapes of the
ores as well as the spatial distribution of the constituent mate-
ial phases. Thus the structure can be described by means of a
tochastic model that allows for randomly correlated variations.
tochastic models of the microstructure are common in porous
edia research.4,8 Stochastic methods have also been developed

or reconstructing the microstructure from partial information
e.g. tomographic slices).9–11

In the following, ensemble averages (i.e. expected values)
ver the fluctuations (disorder) of the microstructure will be
enotede by E[.]. For brevity, the horizontal bar will be used to
enote single-point expectations (mean values).

.1.1. The phase field
In the case of two-phase media, the pore space can be dis-

inguished from the solid matrix in terms of the binary phase
andom field χ(s), which takes values χ(s) = 1 in the solid
nd χ(s) = 0 in the pore space. The mean value and variance
f the phase field are given by E[χ(s)] ≡ χ̄ = 1 − φ̄, where

¯ = E[φ(s)] is the mean volume porosity (volume fraction of
orosity). Similarly, the phase field variance is given by σ2

χ =
¯ (1 − φ̄).

Let χ′(s) = χ(s) − χ̄ denote the fluctuation of the phase field.
he phase-field two-point correlation function between any

wo points s1 and s2 inside the ceramic material is given by
χ(s1 − s2) = E[χ′(s1) χ′(s2)]. Higher-order (multipoint) cor-
elation functions can also be defined, and they incorporate
igher-order information about the microstructure [4, Chapter
]. For isotropic materials the correlation function’s main param-
ter is the correlation length, ξ0, which determines the range
f spatial dependence (in the statistical sense). The functional
orm of the correlation function embodies additional informa-
ion about the microstructure. The variability of the structure is
etermined from the phase-field coefficient of variation, i.e.

2
χ = σ2

χ

χ̄2 = φ̄

1 − φ̄
. (1)

It follows from Eq. (1) that μ2
χ increases monotonically with

¯ . For example, μχ ≈ 0.11 for φ̄ = 0.1, while μχ ≈ 0.67 for
¯ = 0.4. Hence, the variability is small for values of φ̄ ≈ 0,

hile μχ → 1 as φ̄ → 0.5. This observation suggests that low-
orosity materials can be modeled by means of low-order
erturbation expansions around the uniform solid phase (φ̄ = 0).

Complete knowledge of the microstructure requires the joint
multi-point) probability density function of χ(s) [4, pp. 23–58].
his is very difficult in practice, since from experimental sam-
les one can determine at best low-order correlation functions,

hich permit a partial reconstruction of the microstructure [4,
p. 269–302]. However, a low-order characterization of the
icrostructure should suffice for deriving approximate values

e From a mathematical/operational perspective, E[.] denotes the expectation
ver the probability distribution of the fluctuations.



Euro

o
t
p
p

2

I
b
i
u

E

a

σ

H
c

2

c
e
E

E

T
i
b
v
t
m
f
i
v
V

o

E

I
s
w
m

E

e

E

U
v

σ

t
E

t
t
t
s

e
s

μ

I
d
i
f
m
m
μ

t
t

μ

T
s
p
p
t
p
r

2

d
t
b
a
o
c
f
s

2

fi
t
c
d
p
p
l

D.T. Hristopulos, M. Demertzi / Journal of the

f the elastic properties of ceramics, if φ̄ is less than 0.5. In
he following, we focus on this weak heterogeneity limit, and in
articular on φ̄ < 0.4. In this limit, it is justified to ignore the
roducts of fluctuations, which represent small quantities.

.1.2. The elastic modulus: homogeneous solid phase
Let the elastic modulus of the solid phase be denoted by Es.

f variations in Es are ignored, the micro-scale modulus is given
y E(s) = Es χ(s). This assumption is reasonable for two-phase,
deal ceramics. Consequently, the mean value of the elastic mod-
lus characterizing the porous medium at this scale is given by:

[E(s)] = E(s) = Es(1 − φ̄), (2)

nd the variance by

2
E = E2

s σ2
χ = E2

s φ̄(1 − φ̄). (3)

ence, the coefficient of variation of the elastic modulus is
ontrolled by the phase field, i.e. μE ≡ σE/Ē = μχ.

.1.3. The elastic modulus: non-homogeneous solid phase
If variations in the elastic modulus of the solid matrix are

onsidered, e.g. due to the presence of more than one phases or
lastic defects, then Es should be replaced by the random field
s(s). Then, the local elastic modulus is given by:

(s) = Es(s) χ(s). (4)

he phase field may be spatially uncorrelated with Es(s); this
s a justifiable assumption, since the former relates to the distri-
ution of pores in the microstructure, while the latter relates to
ariations of the solid modulus, given that the specific point is in
he solid phase. To avoid confusion it is emphasized that the local

odulus E(s) is always correlated with the phase field χ(s), as it
ollows from Eq. (4). Let us decompose the solid phase modulus
nto a mean value and a fluctuation, i.e. Es(s) = Ēs + E′

s(s); the
ariance of the solid phase modulus fluctuations is denoted by
ar(Es) and the coefficient of variation by μEs . Then, in light
f Eq. (4), the local modulus is expressed as follows:

(s) = Ēs(1 − φ̄) + E′
s(s)(1 − φ̄) + χ′(s)Ēs + χ′(s) E′

s(s).

(5)

n the weak heterogeneity limit, the termχ′(s) E′
s(s) is negligible,

ince it involves a product of two fluctuations. In the following,
e consider only terms that are linear in the fluctuations. This
eans that the mean modulus is given by:

[E(s)] = Ēs(1 − φ̄). (6)

It follows from the Eqs. (5) and (6) that the fluctuation of the
lastic modulus is given by:

′(s) = E′
s(s)(1 − φ̄) + χ′(s)Ēs. (7)

sing the definition Var(Es) = E[E′2
s (s)], based on Eq. (7) the
ariance of the modulus is given by:

2
E = Var(Es) (1 − φ̄)2 + Ē2

s (1 − φ̄) φ̄

+ 2Ēs (1 − φ̄)E[χ′(s) E′
s(s)]. (8)

b
a
c
t
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In deriving Eq. (8) we used the linear property of the expec-
ation, i.e. if a is a constant and X a random variable, then
[aX] = aE[X]. The third term in Eq. (8) is proportional to

he expectation of a fluctuation product which is negligible in
he weak-heterogeneity limit. Hence, the most significant con-
ributions to σ2

E come from the first two terms on the right hand
ide of Eq. (8), and the third term can be dropped.

In light of Eqs. (6) and (8), the coefficient of variation of the
lastic modulus is increased by the coefficient of variation of the
olid-phase modulus, and it is given by:

2
E = μ2

Es
+ μ2

χ = μ2
Es

+ φ̄/(1 − φ̄). (9)

f the variability of the solid-phase modulus is related to elastic
efects, it is reasonable to postulate a relation between the poros-
ty and μEs , since a higher probability of defects can be expected
or a larger specific interfacial area between pore space and solid
atrix of the ceramic. We assume a proportional effect of the
icrostructure on the variability of the solid-phase modulus, i.e.
2
Es

= αμ2
χ, where α is a constant, not necessarily small. In par-

icular, the effect of cracks can be incorporated in α. In light of
his hypothesis it follows that:

2
E = (1 + α) μ2

χ. (10)

he above hypothesis is not as obvious if the variability of the
olid-phase modulus is due to the presence of more than one solid
hases. For multi-phase ceramics, the variability of the solid-
hase modulus will include a contribution that is independent of
he porosity. Note that if we neglect the variability of the solid-
hase modulus, then α = 0 and the coefficient of variation is
educed to the expression for the homogeneous solid phase.

.2. Local scale: continuum elastic modulus

At the micro scale the variations of the elastic modulus are
iscontinuous, due to the binary phase field that changes between
he values zero and one. At the continuum scale, which will
e denoted by �, it is assumed that the elastic modulus vari-
tions are differentiable and the classical (continuum) theory
f elasticity holds.2 This is due to the smoothing effect of the
oarse-graining. The values of the elastic moduli are obtained
rom a coarse-graining of the micro-scale values over a repre-
entative elementary volume (REV), i.e. a sphere of radius �.12

.2.1. Coarse-graining the phase field
Coarse-graining of the microstructure leads to a local phase

eld χ(s; �) = V−1
�

∫
ds′χ(s + s′), where V� is the volume of

he radius- � sphere centered at s, s + s′ denotes a vector whose
enter is at the point s and the end point is inside V�, and

∫
ds′

enotes the volume integral over all the vectors s′ such that the
oints s + s′ are inside V�. Essentially, this operation replaces the
hase field at each point by the average of the field values in the
ocal neighborhood V�. The coarse-grained phase field forms the

asis of the local porosity theory.13,14 Since the REV contains
large number of point values (albeit spatially correlated), the

entral limit theorem suggests that the coarse-grained phase field
ends to follow the Gaussian distribution.15



1 Euro

t
a
c
c
σ

σ

w
�

c

t
c
t
t
f

2

g
o
e

E

E

U
a

E

w
t
o
n
E

o

a
f
t
s
m
p

E

T
V

r

w
p

b
t

σ

U
E

E

e
m

σ

B
l

μ

F
i
m
e
i
t
z
g
p
φ

f
t

t
p
r
(
w
i
t
b
f
c

2

ically represent a single value per each (macroscopic) sample.
The values obtained for different samples may differ. Let L deter-
mine the longer dimension of the sample. If L is large compared
to ξ�, sample-to-sample variations are small (assuming that there
114 D.T. Hristopulos, M. Demertzi / Journal of the

The mean value of the phase field remains unchanged by
he linear coarse-graining transformation, i.e. E[χ(s; �)] = χ̄

nd E[φ(s; �)] = φ̄. However, both the variance σ2
χ(�), and the

orrelation length ξ�, of the phase field are affected by the
oarse-graining. More specifically, the local phase field variance
2
χ(�) = Var[χ(s; �)] is reduced by coarse-graining16 as follows:

2
χ(�) = g� φ̄(1 − φ̄), (11)

here g� < 1. The constant g� depends primarily on the ratio
/ξ0 and secondarily on the specific form of the microstructure
orrelation function cχ(r).

The coarse-graining scale � should be sufficiently large for
he continuum assumption to be valid, i.e. for the phase field to
hange smoothly over distances of order �. Roughly speaking,
his requires the condition E[χ(s; �)]/‖∇E[χ(s; �)]‖ > �. Since
he magnitude of the phase field’s slope is on average determined
rom the correlation length, this condition corresponds to ξ� > �.

.2.2. Coarse-graining the elastic modulus
At the local scale, it is assumed that the elastic modulus is

iven approximately by E(s; �) = Es(s; �) χ(s; �). This is based
n the following arguments: The coarse-grained solid-phase
lastic modulus is defined by:

s(s; �) = V−1
�

∫
ds′ Es(s + s′). (12)

The coarse-grained elastic modulus is defined as:

(s; �) = V−1
�

∫
ds′Es(s + s′) χ(s + s′).

sing the mean value theorem [17, p. 379] the above is expressed
s follows:

(s; �) = V−1
� Es(s∗)

∫
ds′ χ(s + s′) = Es(s∗) χ(s; �),

here s∗ is a point inside the sphere V�. Since the volume of
he sphere V� is assumed to be small compared to the size
f the sample, the elastic modulus of the solid phase does
ot vary considerably within V�. Hence, the approximation
s(s∗) ≈ Es(s + s′) , ∀s + s′ ∈ V� is meaningful. Then, in light
f Eq. (12) we obtain the approximation Es(s∗) ≈ Es(s; �).

The mean value of the solid-phase modulus remains invari-
nt under coarse-graining, i.e. E[Es(s; �)] = Ēs. This follows
rom Eq. (12) upon permuting the integration and the expecta-
ion operator, and applying the definitionE[Es(s + s′)] = Ēs (cf.
econd paragraph in Section 2.1.3). Thus, based on Eq. (6), the
ean elastic modulus is given to leading order by the following

roduct of mean values:

[E(s; �)] = Ēs(1 − φ̄). (13)

he solid-phase elastic modulus variance changes to
ar[Es(s; �)] < Var[Es(s)]. To estimate this change, we
ely again on the proportional effect, which leads to:

Var[Es(s; �)]

E2[Es(s; �)]
= α�

σ2
χ(�)

χ̄2 , (14)

fi
a
b
i
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here α� is the coarse-grained coefficient expressing the pro-
ortional effect at the local scale.

The local-scale modulus variance, σ2
E(�) = Var[E(s; �)], can

e expressed to leading order (ignoring terms that involve fluc-
uation products) as follows:

2
E(�) = Var[Es(s; �)]E2[χ(s; �)] + E2[Es(s; �)]Var[χ(s; �)].

sing the invariance of the coarse-grained mean field, i.e.
[χ(s; �)] = 1 − φ̄, the invariance of the solid-phase modulus,
[Es(s; �)] = Ēs, and the phase-field’s variance reduction as
xpressed by Eq. (11), it follows that the variance of the local
odulus is given by:

2
E(�) = Var[Es(s; �)](1 − φ̄)2 + g� Ē2

s (1 − φ̄) φ̄. (15)

ased on Eqs. (13) and (15), the coefficient of variation of the
ocal modulus is given by:

2
E(�) = σ2

E(�)

E2[E(s; �)]
= (g� + α�) φ̄

1 − φ̄
= (g� + α�) μ2

χ. (16)

or highly homogeneous ceramic materials the porosity is small,
.e. φ̄ < 0.05, and μE � 1. Then, low-order (in μE) perturbation

ethods can be used for determining accurately the macroscopic
lastic modulus. For porosity values near 0.5, higher-order terms
n the expansion become important. However, at φ̄ = 1 the elas-
ic modulus is uniformly equal to zero and thus μE should equal
ero. Yet, at φ̄ = 1 the local modulus coefficient of variation
iven by (16) tends to infinity in light of Eq. (1). This non-
hysical result emphasizes that the expansion is valid around the

¯ = 0 state. In fact, the coefficient of variation is not a meaning-
ul quantity for measuring the variability when the mean value
ends to zero.

In conclusion, we assume that at the local scale the elas-
ic modulus can be modeled as a continuum random field. The
ersistence of the spatial correlations is controlled by the cor-
elation length ξ�. The mean value of the field is given by Eq.
13) and the variance by Eq. (15). Due to the coarse-graining
e expect that the fluctuations of the local modulus are approx-

mately governed by the Gaussian (normal) distribution.f The
wo-point correlation function cE(r) governs the spatial distri-
ution of the heterogeneities. Higher-order correlations follow
rom cE(r), if the local modulus distribution (or its logarithm, in
ase of a lognormal distribution) is jointly Gaussian.

.3. Macro scale: effective elastic modulus

For most purposes, measurements of the elastic modulus typ-
f The normal distribution is not formally the best choice, since it allows a
nite, albeit extremely small, probability for negative modulus values. A more
ppropriate distribution is the lognormal distribution. However, the differences
etween the two distributions become practically negligible as the heterogeneity
s reduced (i.e. as the coefficient of variation tends to 0).
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function ρE(r) = cE(r)/σ2

E. Since the local modulus variations
are Gaussian, odd order terms vanish when the ensemble average
D.T. Hristopulos, M. Demertzi / Journal of the

re no differences in the sample preparation procedure and that
he samples are not damaged). If these ergodic conditions are
atisfied, it is meaningful to define an effective Young’s modulus
hat represents the elastic modulus of the ceramic.

Let us define by σij(s) the local stress tensor, and by εkl(s)
he local strain tensor. Then, assuming uniaxial loading in the
irection z, the macroscopic Young’s modulus is given by means
f the following ratio:

eff = 〈σzz〉
〈εzz〉 , (17)

here the brackets denote the spatial average over the local
uctuations (at each point s) of the strain and stress fields.g If

he ergodic conditions are satisfied, the stress and strain field
verages can be expressed as averages over the probability dis-
ribution of the local modulus.

In principle, to determine the average stress and strain
elds one needs to solve the force-balance equations [2, p.16]
jσij(s) + fi(s) = 0, where ∂jσij(s) denotes the partial deriva-
ive of the stress tensor in the j th direction, and fi the
omponent of distributed force density in the i th direction.h

he applied load is typically incorporated in the boundary con-
itions. Using the constitutive stress–strain equations of linear
lasticity, the force-balance equation can also be expressed as
jCijkl(s) εkl(s) + fi(s) = 0, where Cijkl(s) is the fourth-rank
tiffness tensor.2 This equation can be solved in principle by
xact expressions that yield analytical results using approxima-
ions (e.g. geometry of non-homogeneous inclusions, truncation
f the resulting series) or simplifications (e.g. phases with homo-
eneous moduli).18–21 Most approaches focus on the expansion
f the stiffness tensor around a homogeneous tensor. The impact
f the non-homogeneities is incorporated by the convolution
f the correlation functions at various orders with the Green’s
unction of the homogeneous problem. This approach leads to
ntegro-differential equations from which formal expansions can
e developed.

Here, we propose an intuitively motivated expression for the
ffective Young’s modulus, which is based on physical grounds.
irst, we assume that the Young’s modulus does not depend on

he value of the Poisson’s ratio. This assumption is also used
n other theories and is validated by numerical experiments.1,3

ence, the main parameters that affect the elastic coefficients
t the local scale are: E[E(s; �)], μE(�), and ξ�. The correlation
unction cE(r), is another potential factor. However, if the sample
ize is adequately large, the exact form of the correlation func-
ion (so long as the latter is isotropic) is not crucial. The role of
he sample size in upscaling expressions for the related problem

16
f fluid flow in porous media is discussed in . As argued in
ection 2.2.2, the key perturbation parameter is the coefficient
f variation of the local elastic modulus, μE(�). Hence, it makes
ense to express the effective modulus as a series expansion in

g For example, 〈σzz〉 = 1/|VS |
∫

VS
ds σzz(s), where

∫
VS

ds denotes the volume

ntegral over the sample and |VS | the sample volume.
h Summation is implied over repeated indices, j on the same side of the
quation.

〈

f

h
e
t
o
i
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erms of μE(�). The latter should show up at various orders, cor-
esponding to different orders of non-homogeneities. However,
n the weak-heterogeneity limit the impact of the higher orders
s comparatively reduced.

Motivated by the above considerations and detailed calcula-
ions applying to two-dimensional elastic sheets,22 we propose
he following expression for the perturbation expansion of the
ffective Young’s modulus:

eff = E[E(s; �)]

[
1 +

∞∑
n=1

μ2n
E (�) c2n

]
, (18)

here c2n are perturbation coefficients that correspond to the
n-th order of the expansion. These coefficients incorporate

ntegrals over the correlation functions and the Green’s function
f the homogeneous problem, as discussed above. Eq. (18) is an
ducated ansatz for the result obtained by evaluating explicitly
he Neumann–Born expansion [23, pp. 470–474] of the effective

odulus. The right hand side of (18) is dimensionally correct
nd yields the expected modulus, i.e. Eeff = Ēs, at the limit of
completely homogeneous, zero-porosity ceramic. If the coef-
cient of variation vanishes, Eq. (18) also gives the expected
esult, i.e. E[E(s; �)]. Eq. (18) contains only the crucial statis-
ical parameters for large samples, as argued in the preceding
aragraph.

A brief sketch of the derivation of Eq. (18) follows. In
ight of Eq. (17), the effective elastic modulus is obtained from
olving the macroscopic constitutive relation 〈σzz〉 = Eeff 〈εzz〉.
pproximately,i it holds that 〈σzz〉 ≈ 〈E(s; �) εzz(s)〉. In view
f the constitutive relation, the latter approximation implies
hat 〈E(s; �) εzz(s)〉 ≈ Eeff 〈εzz〉.j Evaluation of the average on
he left hand side makes use of the decomposition E(s; �) =
[E(s; �)] + E′(s; �), where the mean local modulus E[E(s; �)]

s given by Eq. (13) and E′(s; �), is the fluctuation of the local
cale modulus. In addition, the longitudinal strain is expanded as
zz(s) = ε(0)

zz (s) + ∑∞
m=1μ

m
E (�) ε(m)

zz (s), where ε(0)
zz (s) is the strain

f a homogeneous medium with elastic modulusE[E(s; �)], and
(m)
zz (s) is the strain perturbation caused by the non-homogeneity
f the elastic modulus at order m (where m is a positive inte-
er). The perturbations ε(m)

zz (s) are consequently expressed in
erms of the Green’s function of the homogeneous problem and
he local non-homogeneities of the elastic modulus, using the
eumann–Born series expansion. Finally, the ensemble aver-

ge 〈E(s; �) εzz(s)〉 is evaluated. In the series expansion (18),
he perturbation coefficients c2n involve convolutions of the
omogeneous Green’s function with the normalized correlation
E(s; �) εzz(s)〉 is calculated. Furthermore, if the macroscopic

i That is, if the impact of off-diagonal terms of the stiffness tensor is ignored
or the uniaxial loading condition.

j In this approximation we ignore the impact on 〈σzz〉 of strain non-
omogeneities that arise from the non-loading directions. It is reasonable to
xpect that these have a much smaller magnitude than non-homogeneities in
he loading direction; the off-loading strain non-homogeneities couple to the
ff-diagonal elements of the stiffness tensor, thereby further reducing their
mpact.
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Fig. 1. Comparison of the terms μ2n
E (�) for different values of n.

cale is large, L >> ξ�, the coefficients are not very sensitive
n the exact form of ρE(r).

According to Eq. (16), if we set α� + g� = 1 then μ2n
E (�) =

2n
χ . The terms μ2n

χ , for n = 1, 2, 3, 4, are compared in Fig. 1.
or low porosity values only the first term is significant, while at

¯ = 1 all the terms converge to 1. The contribution of the terms
ith larger n is further reduced compared to the terms with lower
if α� + g� < 1.
If we truncate the expansion at n = 2 and use Eq. (13) for the

ean local modulus, we obtain the following estimator Êeff ≈
eff:

ˆ eff = Ēs (1 − φ̄) [1 + c2 μ2
E(�) + c4 μ4

E(�)]. (19)

urther, in light of (16), this is expressed as follows:

ˆ eff = Ēs (1 − φ̄) (1 − β1 μ2
χ + β2 μ4

χ), (20)

here β1 = −c2(α� + g�) and β2 = c4(α� + g�)2 are positive
mpirical coefficients. The signs of the coefficients β1 and β2
re motivated by the close connection between the force bal-
nce equation and the equation of fluid flow in a porous medium
in fact, they are equivalent in one dimension). In the latter
ase, the non-homogeneities lead to an alternating series for the
ffective permeability.16 Intuitively, we can visualize this effect
s the fluctuations at each perturbation order tending to can-
el the impact of the preceding order: the first-order correction
ends to reduce the magnitude of the uniform elastic modulus,
he second-order correction tends to reduce (in magnitude) the
mpact of the first-order correction, etc. The choice of the signsk
s validated by the analysis of experimental elastic moduli, given
n Section 3 below, that results consistently in positive values for
he coefficients β1, β2.

k The nature of the signs (+ or −) is not linked to the dimensionality, but
ather to the ∂j partial derivative operator in the force balance equation: the term
f O(μ2

E(�)) in the expansion involves the pair ∂j1 ∂j2 , which in the spectral
omain is proportional to −kj1 kj2 , k being the wavevector.
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o
o
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Eq. (1) can be used to express μ2
χ in terms of φ̄. Then, expand-

ng the resulting expression into a Taylor series around φ̄ = 0, we
btain the following series for the effective modulus estimator:

ˆ eff = Ēs

[
1 − (1 + β1) φ̄ + β2

∞∑
n=2

φ̄ n

]
. (21)

ence, Êeff can be viewed as a polynomial expansion in φ̄ in
erms of just two positive empirical coefficients. The coefficients
1 and β2 are related to the first two derivatives of the Êeff versus

¯ curve at the origin, since dÊeff/dφ̄ |φ̄=0 = −(1 + β1), while
2Êeff/dφ̄2 |φ̄=0 = 2β2.

.4. On the physical significance of the empirical
oefficients

Various models connecting the Young’s modulus to porosity
xist in the literature. Certain models take advantage of direct
onnections with particular features of the microstructure. For
xample, in the model by Wagh et al.24 an empirical exponent
s linked to the tortuosity of the ceramic’s structure. A different

odel by Rice25 addresses the connection between the elastic
odulus and minimum solid areas related to the connectiv-

ty of the pore space. Models by Jernot et al.26 and Arató et
l.27 emphasize the dependence of the modulus on the coordi-
ation number of the grains. The model of Phani and Niyogi7

mploys the concept of critical porosity in the sense of percola-
ion theory. The model of Roberts and Garboczi1 investigates,
sing synthetic media, the impact of the microstructure cre-
ted by overlapping spheres, spherical pores, and ellipsoidal
ores.

In the model presented herein, the emphasis is placed
n the correlation functions of the phase field. The empiri-
al coefficients, as argued above, involve convolutions of the
wo-point and four-point phase field correlation functions. It
s well accepted to date that the stochastic representation of
orous microstructures is possible in terms of phase-field cor-
elation functions.4 In particular, the first derivative of the
hase-field correlation function (calculated at zero distance)
s proportional to the specific (i.e. per unit volume) interfa-
ial area of the pore space to solid-matrix interface,28,[4, p.
7]. If the pore space is formed by identical, three-dimensional
mpenetrable spheres, the second derivative of the correla-
ion function is proportional to the mean coordination number
4, p. 38]. Various such relations between the microstruc-
ural properties and the correlation functions exist, c.f. [4,
hap. 2]. In addition, studies on synthetic media29 show a
lear dependence of the two-point correlation function on
he shape and spatial arrangement of the pores. Capitalizing
n these relations, various stochastic reconstruction methods
f the microstructure have been proposed.9–11,30 Such meth-
ds accomplish three-dimensional reconstructions of porous

edia using statistical information about the microstructure;

his information is derived from tomographic two-dimensional
mages30 obtained by means of invasive9 or non-invasive

ethods.31
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Table 1
Estimates of the model parameters Ēs, β1, and β2 for various ceramic materials

Material β1 δβ1 β2 δβ2 Ēs (GPa)

Al2O3 1.66 ±0.27 1.51 ±0.49 377.04
B4C 4.80 ±na 1.50 ± na 462.27
Lu2O3 1.56 ±0.36 0.69 ±0.82 197.17
Si3N4 1.77 ±0.46 1.36 ±1.05 294.91
ThO2 1.76 ±0.04 0.82 ±1.05 259.21
ZnO 1.52 ±0.76 0.67 ±0.31 121.54
MgAl2O4 1.77 ±0.17 1.05 ±0.33 280.34
ZrO2xY2O3 1.95 ±0.65 1.69 ±1.18 214.29
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.5. Empirical lower and upper bounds on the Young’s
odulus

Note that the dependence of the effective modulus, Eq. (20),
n the parameters β1 and β2 is monotonic: Êeff is a decreasing
unction of β1 and an increasing function of β2. The values of β1
nd β2 are expected to differ between ceramics, depending on the
omposition, the details of the microstructure and the processing
onditions. Hence, we can formulate empirical lower E

(l)
eff and

pper E
(u)
eff bounds as follows:

(l)
eff = Ēs(1 − φ̄)(1 − β1,max μ2

χ + β2,min μ4
χ), (22)

(u)
eff = Ēs (1 − φ̄) (1 − β1,min μ2

χ + β2,max μ4
χ). (23)

he values βp,min and βp,max(p = 1, 2) are empirical coeffi-
ients determined from the available data sets. Hence, the bounds

efined by Eqs. (22) and (23) do not have the rigor of the various
athematical (e.g. two-point, three-point, variational) bounds

n elastic moduli.4 However, they can provide useful estimators
f the expected elastic modulus if only porosity information is
vailable. These empirical bounds can be updated as measure-
ents on new materials become available, leading to improved

stimates for the range of the coefficients β1 and β2.

p
s
h
v
r
c
t

ig. 2. Young’s modulus (in GPa) of Al2O3(a), Lu2O3(b), ThO2 (c), and MgAl2O4 (d)
20).
he parameters δβ1 and δβ2 represent the half-width of the 95% confidence
ntervals. The symbol “na” means that the half-width estimate is not available.

. Comparison of effective modulus with experimental
ata

For many ceramic materials of interest (advanced, engineer-
ng, functional and some traditional ceramics, e.g. porcelain) the
orosity is low (less than 5%), about 0.5% of which may corre-
pond to disconnected pores. Traditional ceramic materials have
igher porosity: in refractories the porosity is about 20% to pro-

ide resistance to thermal shocks; wall tiles have porosities in the
ange 10–20% as a result of the production process (fast firing
ycle and non-equilibrium phases) and due to the fact that lighter
iles are recommended for walls; clay derived bricks have porosi-

ceramics: experimental data and curves fitted to the semi-analytical expression
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ies around 40% to obtain reduced thermal conductivity, while
or some refractory insulation bricks the porosity is in the range
0–50%. Hence, the model is applicable to various ceramic
aterials. For the ceramic materials investigated here the poros-

ty takes values up to 40%. The experimental data of Young’s
odulus versus porosity were downloaded from the database

f the National Institute of Standards and Technology.41 These
alues were obtained from the investigations reported in32–40.

The data are fitted to the analytical relation (20). The esti-
ates for the three model parameters, Ēs, β1, and β2, are

resented in Table 1. The half-widths δβ1, δβ2, of the 95% confi-
ence interval for the parameters βp(p = 1, 2) are also included
n Table 1 (with the exception of B4C, due to the small number
f samples in this data set).

The experimental data are plotted and compared to the Eq.
20) in Figs. 2 and 3. The data and the analytical expression are
n good agreement, even for the higher porosities in the range
.30–0.40.

With the exception of B4C, the parameter β1 takes values
n the range [1.52–1.95], while β2 takes values in the range
0.67–1.51]. We attribute the observed variations to differences
n the microstructure that are not captured explicitly by the
odel. The values for each coefficient are of similar magni-
ude (around one), indicating that the proposed expansion (20)
as a physical basis. Also, β2/β1 < 1 for all the cases stud-
ed. This property is in agreement with the expectation for

fi
p
o
p

ig. 3. Young’s modulus (in GPa) of B4C (a), Si3N4(b), ZnO (c), and ZrO2xY2O3(d)
20).
pean Ceramic Society 28 (2008) 1111–1120

convergent series expansion. The linear correlation coeffi-
ient of β1 and β2 is 73%, suggesting that the changes in the
agnitude of the two coefficients are correlated. This corre-

ation supports the argument that they are both related to the
icrostructure.

. Discussion

A semi-analytical expression for the effective Young’s mod-
lus of ceramics was presented. The expression is derived from
conceptual model that relates the microstructure to the elastic
roperties. The upscaling procedure used in this paper is based
n the phase-field representation at the micro scale, leading to
continuum random field for the elastic variations at the local

cale, and to an effective modulus at the macro (measurement)
cale. The resulting expression is not completely determined,
ince the force balance equations are not explicitly solved. To
ompensate for the indeterminacy, the empirical coefficients β1
nd β2 are used in the perturbation expansion of the effective
odulus.
The physical insight brought forth by the upscaling process is

hat the macroscopic elastic modulus is controlled by the coef-

cient of variation of the local modulus variations. Using the
hase field representation the latter can be expressed by means
f Eq. (1) as a nonlinear function of the volume fraction of
orosity.

ceramics: experimental data and curves fitted to the semi-analytical expression
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In spite of the approximations employed, very good agree-
ent with available experimental data is obtained. Deviations

f the experimental results from the semi-analytical expression
ay be attributed to non-ergodic (sample-to-sample) fluctua-

ions, which occur if the sample size is not large compared to
he correlation length ξ�.

The argument used for the Young’s modulus can not be
xtended to the estimation of the Poisson’s ratio, which relates
ransverse and longitudinal strain. Hence, a detailed solution of
he stress-strain equations is necessary to derive a physically

eaningful expression for ν.
As shown in Table 1, the two empirical coefficients β1 and β2

n (20) depend on the specific material. This result implies that
simple porosity dependence can not capture the variations of

he Young’s modulus. For isotropic materials the bulk modulus,
, can be considered independent of microstructural details, in
ontrast with the shear modulus, G [4, pp. 541–546]. Since G =
/(2(1 + ν)) and K = E/(d[1 + ν(1 − d)]) (where d denotes

he dimensionality,) the Young’s modulus is expected to depend
n the specific microstructure. This observation is in agreement
ith the conclusion of the present study.

. Conclusions

A new equation for the estimation of the effective Young’s
odulus in isotropic ceramic materials as a function of the

olume fraction of porosity is proposed. It is shown that the
stimator accurately represents the porosity dependence of
xperimental data. Like the Phani–Niyogi relation, the pro-
osed estimator involves three empirical parameters: the solid
hase modulus and two perturbation coefficients. These param-
ters depend on the ceramic’s composition and possibly the
rocessing methods used. The empirical upper and lower
ounds (22) and (23) provide a different means of estimat-
ng the Young’s modulus of a ceramic material, if only the
orosity and the value of the solid-phase modulus are avail-
ble.

cknowledgments

Research supported by the European Union (FP6) grant
Super High Energy Milling in the Production of Hard Alloys,
eramic and Composite Materials (Activation),” contract no.
MP2-CT-2004-505885-1. We would like to acknowledge Prof.
. Sopicka-Lizer (Silesian Technical University, Poland) and

rof. Z. Agioutantis (Technical University of Crete) for their
uggestions, as well an anonymous referee for helpful com-
ents.

eferences

1. Roberts, A. P. and Garboczi, E. J., Elastic properties of model porous ceram-
ics. J. Am. Ceram. Soc., 2000, 83, 3041–3048.
2. Landau, L. P. and Lifshitz, I. M., Theory of Elasticity. Pergamon Press, New
York, 1970.

3. Munro, R. J., Analytical representations of elastic moduli data with simulta-
neous dependence on temperature and porosity. J. Res. Natl. Stand. Technol.,
2004, 109, 497–503.

3

3

pean Ceramic Society 28 (2008) 1111–1120 1119

4. Torquato, S., Random Heterogeneous Materials. Springer, New York, 2002.
5. Reddy, R. R., Muralidhar, M., Babu, V. H. and Venugopal, P., The relation-

ship between the porosity and elastic moduli of the Bi-Pb-2212 high-Tc
superconductor. Supercond. Sci. Technol., 1995, 8, 101–107.
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